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SUMMARY

We derived closed-form expressions for the Cram6r-Rao Bound, MUSIC, and Maximum

Likelihood (ML) asymptotic variances corresponding to the two-source direction-of-arrival

estimation where sources were modeled as deterministic signals impinging on a uniform

linear array. The choice of the center of the array as the coordinate reference resulted in

compact expressions that greatly facilitated our study of effects of temporal phase differ-

ence (correlation phase) of the two sources on asymptotic variances of estimation error.

These effects were shown to be intensified when the two signals were closely spaced and/or

when their normalized correlation magnitude was high. Numerical examples obtained from

specializing general formulas agreed with our results. /
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KEY SYMBOLS

m = number of sensors

n = number of arrivals

N = number of snapshots

ai(wi), 1 < j 5 n : 7nx 1 steering vectors

d= dai(w )/dw, 1 < j < n

- (wI,w 2 ,... ,wn)T : parameter vector

A = [al(sl)- .an(W,): m x n transfer matrix (direction matrix)

A + = (A*A)-A* left pseudo-inverse of A

PA = AA+ : orthogonal projection on subspace spanned by columns of A

PA' = I - PA
H = D*P D

S = n x n source covariance matrix

R = ASA* + a2I = EAE, + EnAnE* : m x m covariance matrix of array output

Al>__'">A d>d+l = ''" = A  = 62, d<n : eigenvaluesofR

Es [el... -  : columns of E, are normalized eigenvectors corresponding to the d

largest eigenvalues of R

En= [ed+1...i] columns of En are normalized eigenvectors corresponding to

the eigenvalue o2 of multiplicity m - d

A8 ( A Ad
An = 0r2I, A. = \

M-T = (M-I)T = (MT) - I

M G N : Schur (Hadamard, elementwise) product, (M D N)i, =MoNij
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1. INTRODUCTION

It is well recognized (references [1], [2], [3], [4], [5], [61, [7]) that, for many important

signal processing applications, the pertinent problem is estimation of the parameters of the

following basic model:

x(t) = As(t) + n(t) (1)

where x(t) is an observed data vector of size m, with m equal to the number of sensors,

the n-vector s(t) contains the complex envelopes of the n narrowband signals from far-field

emitters, n(t) denotes a complex m-vector of additive noise, and the columns of the m x n

transfer (direction) matrix A(Q) are steering vectors aj(wj), 1 < j < n, with the unknown

parameter vector fl = (wl,w 2 ,... ,wn)T corresponding to the unknown directions of arrivals

(DOAs).

The waveforms s(t) are modeled as stationary, jointly Gaussian processes with zero

mean and second moments

E(s(t)s*(s)) = St,,, E (s(t)T(s)) = 0,

where, as usual, the operator E(.) denotes the expected value, the superscript T for trans-

pose, the superscript * for complex conjugate and bt,, is the Kronecker delta.

Similarly, the additive noise n(t), uncorrelated with the signal waveforms, is assumed

to be a stationary, zero mean, Gaussian process with second moments

E(n(t)n*(s)) = a2 I6t,, E (n(t)nT(s)) = 0.

The array output, being observed at N discrete time instances, is a stationary, zero

mean Gaussian process with second moments

E(x(t)x*(s)) = Rbt,. = {A(f1)SA*(f2) + 2I}bt,5, E (x(t)xT(s)) =0.

It is well known that R has the following eigen-decomposition
m

R = Ajeje = E8AE; + E,,AE*,
j=1

with

A1  > Ad>d+l" Am =a 2 , d<n,

where the columns of E, are the eigenvectors of the corresponding d largest eigenvalues and

the columns of En are the n - d eigenvectors of the eigenvalue a2. Here, the diagonal matrix
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A, contains the d largest, in descending order, elgenvalues of R. The range of E, is often

referred to as the signal subspace and its orthogonal complement, which is spanned by E",

as the noise subspace.

The problem of determination of the number of arrivals n belongs to the area of detection

and will not be discussed here. It is assumed that n and d are known and one wishes to

estimate the DOA vector n.

Recently there has been interest in treating the matrix S other than real for two-source

applications (references [8], [9], [10], [11], [12]). Earlier analytical results in this direction

for the Cram4r-Rao bound can be found in references [13], [14], [15], and most recently in

reference [16]. The purpose of this report is to investigate effects of temporal phase difference

(that is, correlation phase) of two sources on asymptotic variances of estimation error using

a uniform linear array. Ii particular, we shall restrict to the Cram~r-Rao bound (CRB),

the MUSIC and Maximum Likelihood (ML) methods that are of practical and theorectical

interest (references [2], [3], [4]). Our results also provide an analytical background for

simulations such as those performed in references [10] and [12].

This paper is organized as follows. In section 2, we shall collect several important

asymptotic results on estimation error for the deterministic-signal model, i.e., in (1) the

waveforms s(t) axe fixed in all realizations of the random data x(t). Among these are the

CRB for the estimation of the parameter vector 0 of (1), the asymptotic covariance matrix

for the MUSIC method and that for the ML method - all three were derived by Stoica

and Nehorai (references [2], [3]). Recently, the asymptotic covariance matrix for a general

multidimensional signal subspace method, which includes ML, has been obtained by Viberg

and Ottersten (references [5], [6), [7]). For an appropriate choice of the weighting matrix,

the resulting covariance matrix of estimation error is smallest among those in the weighted

subspace fitting (WSF).

We shall specify the geometry of the sensor array and the number of arrivals in section

3. Precisely, we shall study the situation of two narrowband plane waves impinging on a

uniform linear array (ULA). This will specify the form of the steering vectors, and thus

the transfer matrix. Basic properties of ULA that are essential for subsequent development

are derived. Some of these properties are independent of coordinate reference; others are

not, and an inappropriate choice will result in unnecessarily complicated expressions and

analygis. A suitable coordinate reference for our purpose is the center of the array.
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In section 4, we shall be concerned with effects of the temporal phase difference on the

CRB covariance. The main result in this section states that, for the coordinate reference at

the center of the array, then the CRB variance of each estimation, considered as a function

of the phase difference 0, is periodic of period 1800, symmetric about 90', and on the interval

where 00 < 0 < 1800 , it is decreasing when 00 < 9 < 900, increasing when 900 < 0 < 1800,

and it assumes the minimum at 90' and maximum (either finite or infinite) at 00 and 1800

(that is, either the two signals are in phase or out of phase). This behavior, observed in

simulation studies (references [10], [12]), can be :nalytically deduced from reference [15].

Our proof follows the development in reference [2].

Results on effects of the temporal phase difference on asymptotic MUSIC covariance

is derived in section 5. We analytically show that, for the coordinate reference at the

center of the array, the asymptotic MUSIC variance of each estimation is of the form

A + Bcos(9), where A > fBI >_ 0 with B having the sign of the function p(Aw;m) -
(The electrical separation Aw will be defined subsequently in section 2•angularseaaonsbeutl

below). The behavior of the asymptotic MUSIC variance with respect to 0 thus can be

obtained immediately. In particular, suppose the electrical angular separation is within one

beamwidth (0 < Aw < 11), then the asymptotic MUSIC variance is symmetric about 1800,

decreasing when 00 < 0 < 1800, increasing when 1800 < 0 < 3600, attains its maximum at

0 = 00 (that is, the two signals are in phase) and minimum at 0 = 1800 (that is, the two

signals are out of phase).

In section 6, we examine effects of the temporal phase difference on the asymptotic ML

variance, which is derived in terms of CRB variances ad covariancc. As in the case of the

asymptotic MUSIC variance, the behavior of the asymptotic ML variance, as a function of

0, is also influenced by Aw in terms of beamwidths. In particular, suppose the electrical

angular separation is within one beamwidth (0 < Aw < 2-), then the asymptotic ML

variance is symmetric about 1800, and on the interval where 00 < 0 < 1800, it attains the

maximum at 0 = 00 (that is, the two signals are in phase) and minimum at 0 = 00 with

900 < 9o < 1800, where the exact location of 00 depends on Aw and other parameters.

Numerical results obtained from specializing general formulas surveyed in section 2 are

presented in section 7. These numerical results are consistent with our analytical results.

As discussed in sections 4 to 6, effects of temporal phase difference on CRB, asymptotic

MUSIC, and ML variances of estimatinn ,rror are intensified when t1-- two sources are
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closely spaced and/or when their normalized correlation magnitude is high. This behavior

is well noticeable in figures l(a) through 3(d) .

Finally, in section 8, we conclude the paper by summarizing our findings with emphasis

on the case where the two arrivals are closely spaced with their electrical angular separation

within one beamwidth.

2. ASYMPTOTIC COVARIANCE MATRICES OF

ESTIMATION ERROR

The Cram~r-Rao bound (CRB) provides a lower bound for the covariance matrix of the

estimation error of any unbiased estimate. Stoica and Nehorai (reference [4]) gave a general

formula for the CRB from which they derived expressions for the case where signals are

deterministic as well as the case where signals are random. Since the expression of CRB

for random signals is much more complicated than its deterministic counterpart, and since

deterministic CRB is the lower bound of random CRB (reference [41), hereafter we shall

restrict our attention to the deterministic-signal model, i.e., in (1) the waveforms s(t) are

fixed in all realizations of the random data x(t) and only n(t) varies from realization to

realization. For deterministic signals, Stoica and Nehorai proved

Theorem 1 (reference [2]) Let &lN be an (asymptotic) unbiased estimate of the true

parameter vector fl. For large N, the Cramir-Rao inequality can be written

NE ((IN - fl)(N - i) T) > CRB,

where

CRB = 2 [Re(H G S) (2)

Here the matrices D and P- are evaluated at 0?.

Hereafter, we shall refer to

lim NE ((flN - fl)(flN- l)T) (3)
N---oo

as the asymptotic covariance matrix of the estimation error corresponding to the method

that yields the estimate !f of the true parameter vector f. The matrix 2 Re(H ® ST) is

called the Fisher information matrix.

The asymptotic covariance matrix for the MUSIC method was also obtained by Stoica

and Nehora; in matrix form it reads
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Proposition 1 (references [21, [31) Suppose the source covariance matrix S is of full rank.

Then the asymptotic covariance matrix of the estimation error of the MUSIC method is
a 2

CMU = -(H ® I)-'Re(H 0 K T)(H D 1)-, (4)
2

where

K = S-1 + a 2 S-1(A*A)- 1 S - 1 . (5)

Notice that (H G I) - ' is a fancy expression of the matrix

1

1

Recently, Viberg and Ottersten (references [5], [6], and [7]) have introduced a unified ap-

proach to multidimensional signal subspace method called weighted subspace fitting ( NSF)

by incorporating a general Hermitian weighting matrix W and the estimation error covari-

ance is minimized with respect to this weighting. When W = I, the corresponding method

is called the multidemensional MUSIC (MD-MUSIC), as opposed to the conventional (one-

dimensional search) MUSIC.

The maximum likelihood (ML) method is known (references [5], [6]) to be equivalent to

the weighted subspace fitting method with the weighting matrix W = A where

A-= A , -o
2 1 =2

Ad - a2

The asymptotic covariance matrix of the estimation error of the subspace fitting method

with the weighting matrix W is given by

Theorem 2 (reference [6]) For the subspace fitting method with the Hermitian positive

definite weighting matrix W, the asymptotic distribution of the estimation error is given by

vI(zN - fl) - N(O, CWSF),
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where

CWSF = (6)

with

V" = -2Re{H G (A+EWE;A+*) T }, (7)

q = 2a 2 Re{H 0 (A+E.WAA- 2WE:A+*)T }. (8)

Here, all expressions are evaluated at the true parameter n. The result holds for arbitrary

signal correlation including full coherence.

When S has full rank, a convenient expression for CML can be derived from (6) to (8):

Corollary 1 (reference [61) Assume the source covariance matrix S is nonsingular. Then

the asymptotic covariance matrix of the estimation error of the ML method (W = A) is

CML = CRB [I + 2Re{H G (A*A)-T}CRB]. (9)

This expression is consistent with an earlier excpression obtained by Stoica and Nehorai

in reference [3].

3. BASIC PROPERTIES OF UNIFORM LINEAR ARRAY

In this section, we shall discuss fundamental properties of a ULA that are pertinent to

subsequent development. Some properties are independent of the choice of coordinate refer-

ence (Lemmas 1 and 2); others are not, and an unsuitable choice will result in unnecessarily

complicated expressions and analysis. An appropriate coordinate reference for our purpose

is the center of the array, which will become clear by the end of the sectioa.

We shall consider the situation of two narrowband plane signals impinging on a uniformly

distributed linear array. In this case, the parameter vector is fl = (wI,w 2)T. In view of

reference [171, we shall assume the number of array elements m > 3.

Let Aw = P1w - w21 be the electrical angular separation of the two signals that will be

defined shortly. In this section, we shall prove that the asymptotic covariance matrix CRB,

CMU, CWSF (and thus CML and Cwo) axe dependent on the electrical angular separation

Aw and independent of the absolute values w, and w2 . An analogous temporal result for

CRB was shown in references [13] ard [14]. Proceeding from spatial premises of the basic
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mod,' stated in (1), our development gives a direct treatment and insight to the two-source

directicn finding (DF) using a uniform linear array. Consider the general case where the

coordinate origin Q is at a point on the line segment connecting the first sensor and the

last (m-th) sensor. In this setting, if the coordinate origin 0 is between the p-th sensor

and the (p + 1)-st sensor, for some 1 < p _ m - 1, and let

A distance between Q and p-th element
r -- interelement spacing ' where 0<r< 1 (10)

then the steering vector a (wi), for j = 1, 2, is given by

a3w)=[i(p1l+r)w, . ilrw -e~'~~irw"i 1 -(r)w.. . prw T

where
27rd sin(Oj)

A

denotes the electrical phase angle corresponding to the angle of arrival 4j, measured with

respect to the normal to the array, of the j-th plane wave with d as the interelement spacing

and A as the array wavelength.

The case where the coordinate center is chosen to be at a particular sensor element can

be obtained from the general formulation by setting either r = 0 or r = 1. A convenient

choice of coordinate origin of the array is its "center," which is its actual middle sensor if

m, the number of array elements, is odd, otherwise it is a fictitious center. When m is even,

the choice of the fictitious center as the coordinate reference corresponds to setting p = a

and r = I in the general case.2

For a one-to-one correspondence between the values of Oj and wj, we shall assume that

d < A/2 (reference [18), page 27). Thus, by reorder' g the two plane waves if necessary,

without loss of generality, we can always write the direction matrix as

e-i(p-l+r)w e-i(P-1+r)(w+Aw)

e-i(l+r)w e-i(1+r)(w+Aw)

A(origin at 0) e-iw e- i (w+Aw) (11)

ei(1-r)w ei(1 -r)(Lv+Aw)

ei(m-p-r)w ei(m-p-r)(w+Aw)

7



where w and w + Aw are electrical phase angles with Aw < ir. Consequently,

A(origin at 0) - (P1+r)w U Ao(origin at 0), (12)

where

1e-i(p-l+r)&w

1 i(+rW

U ei2w , Ao(origin at 0) e-1&- (13)

1 ei(m-r)&w

Note that U is unitary, that is UU* I =U*U.

In the same manner,

-i(p -1 + r)e-i(P1+)w -i(p - 1 + re(1T(+W

-i(1 + r)ei(+r)w -i1+ r)ei(1+r)(w+Aw)

D(origin at 0) =-ire-irw -ireir(w+Aw) (14)

i(m - p - r),i(m-p-)u; i(m - p -reimp)(Aw

can be factored as

D(origin at Q) = e-1(P1+r)w U Do(origin at 0), (15)

where

-(p - 1+ r)i -(p - 1 + r)ie-i(P-1+r4 .w

+i1 r) -i1+ r)ei(+r)Aw

Do(origin at 0) =i -ire-irAw . (16)

(1-r) -( -~iIrA

(m - p - r)i (m - p - r)iei(m-pr)A~w

8



Using expressions (12) to (13) and (15) to (16) together with the fact that U is unitary,

we see immediately

(A*A) - 1 = (A;Ao)-1 , (17)

A + = A+U*, (18)

PA = UPAoU*, (19)

PA P = ue 0u, (20)

H = D;P-Do, (21)

R = URoU" (22)

where Ro A AoSA + a2 I.

The expression (22) states that R and Ro are similar. It is well known that similar

matrices have the same eigenvalues with the same multiplicities. Also, from (22), it follows

that if f is an eigenvector of R0 then Uf is an eigenvector of R corresponding to the same

eigenvalue, and if e is an eigenvector of R then U*e is an eigenvector of Ro corresponding

to the same eigenvalue. Thus,

E. = UF. (23)

where

F. = Ifl>I'fd]

with the columns fl," , fd of F, are normalized eigenvectors corresponding to eigenvalues

\1,..., Ad of B 0 (also of R). Apply (18), (21) and (23) to (7) and (8) we have

= -2Re{H G (A+FWFIA+*)T }  (24)

Q = 2a 2Re{H D (A+FaWAs.,- 2WF:A+*)T }. (25)

That is, in the case of two narrowband plane signals impinging on a uniformly spaced linear

array, the asymptotic covariance matrix CWSF of the estimation error using subspace fitting

with the weighting matrix W in Theorem 2 is dependent on Aw and independent of w.

For two arrivals with signal powers irl, ir2 > 0, the source covariance matrix S is given

by

F /F~1 -7r p Iple'O

S"r2 r[9 (26)
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where p is the normalized correlation between the first and second baseband signals and

O=arg(p) is the temporal phase difference. If p=O, the two signals are incoherent, pl-=1,

they are coherent, and 0 < IpI < 1, they axe partially correlated. Since ei = ei( 0+2kr) for any

integer k, we shall consider only 0 < 6 < 27r. Note that 0 depends on, as being measured

with respect to, the coordinate reference of the array.

Apply (17) and (21) to (2) to (5) and we see readily that CRB and CMU are dependent

on Aw and independent of w.

We summarize the above discussion in

Lemma 1 For any two distinct narrowband plane signals with electrical angles W1 and

w2 impinging on a uniform linear array, for any choice of coordinate origin along the line

segment connecting the first and last sensing elements, the asymptotic covariance matrices

CRB, CMU, CWSF (thus, in particular, CML ) are dependent on Aw=lwl - w21 and inde-

pendent of w, and w2 . Furthermore, the result holds for arbitrary signal correlation including

full coherence, except for CMU.

Since e~i(G+1) = -ek io, by applying (26) to (2), we obtain immediately the following

result which can be deduced from references [13], [14].

Lemma 2 For any coordinate reference of the array along the line connecting the first and

last sensors, the elements of the 2 x 2 real symmetric matrix CRB, considered as functions

of the temporal phase difference 8, satisfy

[CRB(O + 7r)]ij = [CRB(O)]ii for i = 1,2 (27)

[CRB(0 + r)] 1 2 = -[CRB(0) 1 2. (28)

The matrix H is a prominent component of CRB, CMU, and CWSF as seen in (2), (4),

(7) and (8), as well as in (9). The next result, whose proof appears in Appendix A, gives a

general description of H.
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Lemma 3 For any choice of coordinate origin on the line segment connecting the first and

last array elements, H is of the form

H= Hn1  H 12 ] IH121 _ Hnl, Hnl > 0.
H 12 H 1 I

Furthermore, let 0 be the general coordinate reference given in (10) then

Hn1(origin at Q)
m(m - 1)(2m - 1) _ m(p - 1 + r)(m - p - r)

6
m "m2 (m + 1 - 2(p + r)) 2

in2 4M2 - 2 . - I

- (m + 1 - 2(p + r)) Re (EZ(origin at Q) E(origin at 0))

+ 1,(orgin at O)12}. (29)

and

H12(origin at Q)
= - 2 (origin at Q)

1n) 2 m2 (M + 1 - 2(p + r)) Ek(origin at Q)

m2 (m + 1 - 2 (p+ r))2 1-,ori n4 ~ (oiginat Q)

-(F-k(origin at 0))2 1-(origin at O)}. (30)

where

-(origin at 0) -, ei(k-P-+)1 -=Si(- ) ei(' -(p+r))A(

k=O ksin( ) (31)

Ek(origin at 0) A E -r(k - ( - - 1 + =) de (-(origin at 0)), (32)
k=O

k2 (origin at 0) A E (k - (p - 1 + r))2ei( k - (p - l+r))Aw _ i d (origin at 0))
k=O

(33)

11



For ease of notation we define

sin( 2)

s,_ __ _2__b 2 (34)
_/M2 -e) 'M2 (i(-

where

- sin( ) (35)

Notice that

n2 - sin(-) = det(A*A) = det(A;Ao) > 0 (36)

since A AO is Hermitian (hence its determinant is non negative) and, for 0 < Aw < 7r and

m > 3, the two columns of A0 are linearly independent (hence det (A;Ao) $ 0). Thus,

s in ( -2 )

Therefore,

a > IbI _ 0, sign(b) = sign(p(Aw;m)). (37)

As a consequence of Lemma 3, if the coordinate origin is at the center of the array

(hence p + r = '+1 regardless of the parity of m), it follows from (31) to (33) that H is a

real matrix with entries

HI1 (origin at center) = M(M - 1)(M + 1) da ) (38)12 -a dw/

and

d2 p / 2
H 12(origin at center) - d(_w)2 b. d 2 (39)

Evidenced by (2), (4), (7), and (8), as well as in (9), the choice of the center of the

array as the coordinate reference will greatly facilitate the investigation of the effects of the

temporal phase difference on CRB, CMU, and CWSF since the cross terms that involve

both the temporal phase difference 0 and arg(H12) (dependent on the electrical angular

separation Aw) will be simplified when H is real. Clearly, the analysis can be carried out in

terms of the general coordinate reference (10). However, to avoid cumbersome arguments

and expressions involving awkward translations, we elect to present results in the remainder

of the paper for the coordinate origin chosen at the center of the array.
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4. EFFECT OF TEMPORAL PHASE DIFFERENCE ON CRB

The main result in this section can be summarized as follows. Recall that, by Lemma

2, we can restrict the temporal phase difference 0 to the interval [0, 7r].

Proposition A Consider [CRB]ii, i = 1,2, as a function of the temporal phase dif-

ference 0, 0 < 6 < 7r, of two narrowband signals impinging on a ULA whose coordinate

origin is chosen at the center of the array. Then [CRB(#)1,:, i = 1,2, is symmetric about

r/2. Furthermore, it is decreasing for 0 < 0 < 7r/2, increasing for 7r/2 < 0 < r, attains

the maximum (either finite or infinite) at 0 and 7r, and the minimum at ir/2.

Detailed statements and proofs leading to this result are presented below in a sequence

of two lemmas. Proposition A can be deduced from reference [151; however, our argument

is based on expression (2) derived in reference [2].

First, using the coordinate origin at the center of the array, we obtain from Lemma 3

Re( = V7- [ f7H 1  Ipj H 1 2 Re(e-io)]Re(a G )  = 72 V 7r o

1p) H1 2 Re(ei0) V-iHil

and then

det (Re(H ® sT)) = 7r17r2 (H11 2 - p12 H1 2
2 cos2(0)) . (40)

We shall consider [CRB]i, i = 1,2, as a function of 0. In view of Lemma 2, it suffices

to restrict 0 to the interval 0 < 0 < 7r.

Using (2) and (40), we have

[CRB], (1 i =1,2. (41)2i1 Hj -Ip2 (H)2 cos2(0)

Clearly,

Lemma 4 Consider [CRB]ii, i = 1,2, of two narrowband plane waves, with electrical

angular separation Aw, impinging on a ULA whose coordinate origin is chosen at the center

of the array. Suppose that either the two signals are incoherent (p = 0) or H 12 = 0, then

(CRBJjj = 2riH 11 ' i = 1,2, (42)
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that is the variances [CRB]I1 and [CRB]22 are independent of 0.

We note that, using (2) and (26), Lemma 4 holds for arbitrary coordinate reference

where HII, H12 and [CRB]i i , i = 1,2, are measured with respect to that coordinate

reference. Also, using (30) to (33), we observe that for any choice of coordinate reference

and for any even m > 4, then H12 = 0 when Aw =! BW (= r) where BW A 2- denotes

a beamnwidth.

Next, we have

Lemma 5 Consider [CRB]ii, i = 1,2, as a function of 0, for 0 < 0 < 7r. Then

[CRB(O)]jj, i = 1,2, is symmetric about 1. Moreover, [CRB(O)],i, i = 1,2, is decreasing

for 0 < 0 < ir/2, increasing for 7r/2 < 0 < 7r, attains the maximum at 0 = 0, 7r, and the

minimum at 0 = 7r/2, with

or
2

min [CRB(0)], = i = 1,2, (43)0 2riHil'

max[CRB(O)]ii = 2ir1 (- ( 1 )2 , i = 1,2. (44)

Furthermore, [CRB]ii, i = 1,2, is arbitrarily large (oo) if and only if

(i) IH121 = Hil (hence, H is singular),

(ii) IpI - 1 (hence, S is singular i.e., the two signals are coherent), and

(iii) 0 = 0, r (i.e., the two signals are in phase or out of phase).

Proof. In view of Lemma 4, without loss of generality, we can assume 0 < IpI < 1 and

H12 $ 0. We notice that for any E [0, r/2],

cos2 (1 ± -)) = sin 2(,).

Hence, for 0 < 0 < r, the variance [CRB(O)]ii, i = 1, 2, is symmetric about . The rest

of the lemma follows from examining the factor

1

I (H cos2(0)

14



of [CRB]ii, i = 1,2, in (41) as a function of 0. N

Qualitatively, when the normalized correlation magnitude ]pI is large (close to unity)

then it follows from (41) that, other things being equal, effect of 8 on [CRB]Ij, i = 1,2, is

intensified.

On the other hand, when the electrical angular separation Aw is small in terms of

beamwidth, (equivalently, the two steering vectors which are columns of A are close), then

the two columns of D (being elementwise derivatives of the two steoring vectors) are close.

Since

H !_ D*P-,D = D* (P1L)* P-D = (P-D)* P- D,

it follows that the ratio 1H 121/H11 is close to unity when Aw is small. Also, from (38) we

notice that H11 is small when Aw is small. Consequently, other things being equal, from

(41) we see immediately that effect of 0 on [CRB]ii, i = 1,2, is augmented when Aw is

small.

Therefore, the effect of temporal phase difference on [CRB],,, i = 1,2, are intensified

when the two signals are closely spaced and/or their normalized correlation magnitude is

high.

For the general coordinate reference, we notice that H need not be real and thus (41)

is replaced by

(CRB]( ( ) , i= 1,2. (45)[CR~i = 27riH1l 1 pJ -I Hl 2 cos2(arg(H112) -0)

In Appendix B, we present an example where the electrical angular separation Aw is an

integor multiple of (standard or first null) beamwidth, denoted by BW, with one BW equal

to 2r/m. That is

A~w = t BW = t ( r) ,

where I = 1,2,..., [LJ with [-'J denotes the largest integer less than or equal to M. It

is interesting to note that, in this situation, H is nonsingular for m > 4 and singular for

m = 3. Therefore, for m > 4 and Aw = t BW, t = 1,2,..., [MJ, the variance [ORB]i,

i = 1,2, is finite for arbitrary signal correlation, whereas, when m = 3 and Aw = 1 BW,

the variance [CRB]ii , i = 1,2, is arbitrarily large when the two signals are correlated with

an appropriate temporal phase difference 0 depending on the coordinate reference.
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5. EFFECT OF TEMPORAL PHASE DIFFERENCE ON CMU

With the coordinate reference at the center of the array, by the computation in Appendix

C we have

[CMU]ii = 2i H 1 (1 - P) (Ai + Bi cos(O)) (46)

where

Ai = 1 + ( + Ipl2Iri) -a, (47)

Bi = 2 .f/- I-T plI.b, (48)

with

HI given in (38),

a and b given in (34),

det(S) = 1r,2 (1 - p12) > 0 and i,j E {1,2}, j A i.

Notice that Ai and Bi, i = 1,2, are independent of the temporal phase difference 0.
A7so, using the fact that 2 fJ''p _< Irj + Jp[J2 jr, i,j = 1,2, j 4 i (as "geometric mean"

< "arithmetic mean" or, simply, by a quadratic expansion) in conjunction with (37), we

obtain, for i = 1,2,

Ai > IBI > 0, sign(Bi) = sign(p(Aw;m)).

If p = 0 then Bi = 0 and, using Lemma 4, we obtain immediately

Proposition B.1 Consider [CMu]ii, i = 1,2, of two narrowband plane waves, with

electrical angular separation Aw, impinging on a ULA whose coordinate origin is chosen

at the center of the array. Suppose that the two signals are incoherent (p = 0) then, for

i= 1,2,

[CMU,. - 2 " 1+ a.or

= min [CRB(O)]i + 2 H11 . a (min [CRB()]i.
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Next, we consider the general case (0 < Ipj < 1) where Proposition B.1 depicts a

degenerate situation. For any 0 < Aw < ir, there exists a nonnegative integer t, with

0 < I [< Lj, such that IBW < Aw < min{(I+ 1)BW,r}; where BW A 2r/m denotes a

beamwidth, and [xj denotes the largest integer less than or equal to z. Clearly, for i = 1, 2,

Bi > 0, for i BW <Aw < (I + 1) BW and I even (including zero),

Bi < 0, for IBW <Aw< (1+1)BW and £odd,

Bi = 0, for Aw =(I+ 1)BW.

Therefore,

Proposition B.2 Consider [CMU]j,, i = 1,2, as a function of the temporal phase

difference 9, 0 < 0 < 27r, of two narrowband, noncoherent (0 < Ip < 1) plane waves, with

electrical angular separation Aw, impinging on a ULA whose coordinate origin is chosen at

the center of the array. Suppose £ BW < Aw < min{(I + 1) BW, 7r} for some nonnegative

integer I with 0 < I < [2J. Then [CMU(O)]1,, i = 1,2, is symmetric about 9 = ir.

Moreover,

(a) for IBW < Aw < min{(£+ 1)BW,r},

0 if I is even (including zero), then [CMU(O)Iii, i = 1,2, is decreasing for

0 < 9 < r, increasing for r < 0 < 2r, attains its maximum at 8 = 0, 2r,

and its minimum at 9 = r;

• if t is odd, then [CMu(O)]ii, i = 1,2, is increasing for 0 < 0 < w,

decreasing for ir < 0 < 27r, attains its minimum at 0 = 0, 27r, and its

maximum at 0 = r;

in either case,

mn[CMi (O)i = 22 ) a(Ai - jBi), i= 1,2
a 2w 11 uHi (1 - IpI )

max[CMu(&)Ij = 2 OrH2(i-1p) _.(A, + IBIl), i =1,2

where Ai and Bi are given in (47) and (48);

(b) for Aw=(I+1) BW(<r),

[CMU(O)],i = 27ri (1 - 1p1l) H11IA=(+w)BW AIIAW=(t+l)BW, i = 1,2,
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where

o.2
AiIAw=(t+1)BW = 1 + + ,I,7

r )  ij = 1,2 and j # i,
m det(S)

and

m M 2 -1 1
Hj1Lw=(t+1)BW = in [m -. 1 2(~~l4 3 sin 2

hence, it is independent of 0.

Furthermore, in all cases, when Ijp approaches unity, [CMu(#)ii gets arbitrarily large,

regardless of the temporal phase difference 0 and electrical angular separation Aw or any

other parameters.

It follows immediately from (46) to (48) that for large Ipl, other things being equal,

effect of 0 on [CMulii, i = 1,2, is intensified.

On the other hand, when Aw is small (in terms of beamwidth), H11 is small and, by

(34), a and b are large. Therefore, effect of 0 on [CMu],i, i = 1,2, is intensified when Aw

is small.

Consequently, effect of the temporal phase difference on [CMU]ii, i = 1,2, is intensified

when the two signals are closely spaced and/or their normalized correlation magnitude is

high.
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6. EFFECT OF TEMPORAL PHASE DIFFERENCE ON CML

From (9), with the coordinate reference at the center of the array, a straightforward,

but tedious, computation yields

[CMLii = [CRB),, + 2H 1 . a. ([CRB]jj2 + [CRB]122)

- 4 H1 2 -b. [CRB]i• - [CRB]12 , i = 1,2, (49)

where

[CB] -. (. 2 cs() 1,2, (50)

[CRB]1 2  - / IA H 1 2  ( H 2 cos2() (51)

Clearly, if either p = 0 or H12 = 0, then [CRB(0)]12 = 0 and [CRB(0)]I, -

min0[CRB(0)],,, i=1,2. Therefore,

Proposition C.1 Consider [CML]ii, i = 1,2, of two narrowband plane waves, with

electrical angular separation Aw, impinging on a ULA whose coordinate origin is chosen at

the center of the array. Suppose that either the two signals are incoherent (p = 0) or H 12

= 0 then, for i = 1,2,

[CML]ii = min [CRB(0)], + 2 H11 a. mn [CRB(6)]j)j

which is independent of 0 and equal to [CMU]ii when p = 0.

Proposition C.1 is consistent with the general result of Stoica and Nehorai (reference

[2]), which states that if the matrix S (not necessarily a 2 x 2 matrix) is diagonal then the

asymptotic covariance of ML coincides with that of MUSIC.

We next consider the general case (0 < IpI -< 1 and 0 < IH121 _< H11 ) where

Proposition C.1. is a degenerate situation.

First, we suppose that 0 < Ip < 1. To facilitate the discussion, we rewrite the expression

(49) as follows.

[CML(O)],i = T1(0) + T2 (0) (52)
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where

TI(O) = [CRB(0)Jj + 2 Hi -a. ([CRB(O)]i i2 + [CRB(0)]122), (53)

T2(0) = 4 IPIH122_.bH2
2  . cos(0) (54)

ir ,v-'riT-Hi 3 b - IJp (H) 2 cos2(0)) 2 (

Notice that

dTi1  a 2  - sin(0)
x F(8) cos(0), (55)dO iri Hit (l I pI2 ( ,)2 cos2(0))

dT2  a 2  -sin(O)
x G(O), (56)dO 7ri H i 1 p12 -[p ) 2 cos2(0))

where

F(O) +P12 
(H)2 { + a. -- H 2

a2 (i+ ipi2 (H 2 co() 1
+ I o 2(9 , j ~= 1,2 and j 36i,

-r JpJ2 2  cos2(0) J
and

a 2 IH 2 41p 2 _(1 )2 Cos 2 (0)
G(O) = - ) -b- (1 2

G(7)- 1pI 2  ) cos2(0)

Obviously, if either p = 0 or H 12 = 0 then both F(8) and G(O) vanish, and hence

[CML(O)]ii is independent of 0 as known in Proposition C.1.

For p $ 0 and H12 $ 0 we have immediately

F(O) > 0, sign(G(0)) = sign(p(Aw;m)).

Thus, T1(O) is positive and, as a function of 0, behaves exactly like [CRB(O)]ii. The

term T2 (0) of (52) is more troublesome due to the factor V (Aw; m).

Recall that, for any 0 < Aw < r, there exists a nonnegative integer f, with 0 < I < V J,
such that IBW < Aw < min{(f + 1)BW, r}; where BW A 27r/m denotes a beamwidth

and [xj denotes the largest integer less than or equal to x. Clearly,

( > 0, for tBW <Aw < (t+ 1)BW and t even (including zero),

p(AW; m) < 0, for IBW <Aw<(1+l)BW and eodd,

= 0, for Aw=(I+1)BW.
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Suppose that p (Aw; m) > 0. Clearly, the global maximum occurs at 0 = 0, 27r. From

(55) and (56) we have

< 0, 0<0<7r/2, and ir<0<37r/2,dT1d- = 0, 0 = ir/2, 7r, 37r/2, 27r,

> 0, ir/2<0<ir, and 37r/2< <2r,

< 0, o<0<7r,
dT2  f = 0 o, = , 27r,

> 0, 7r<0<27r,

thus

d dT + dT < 0, 0<0 <r/2,

T= dO dO > 0, 37r/2 < 0 < 2r,

which implies [CML(O)]ii is decreasing for 0 < 0 < lr/2 and increasing for 37r/2 < 0 < 21r.

Now consider 7r/2 < 0 < 37r/2. By the symmetry of [CML(0)]ii about ir we need only

examine the case where 7r/2 < 0 < 'r.

We write

d a2 - sin(9)
'9H ([CML(()) = ) 2 x (F(O) cos(0) + G(O)).7ri Hil (lJpJ 2 (H )2 cos2(0))

Suppose that W ([CML(O)]I2 ) is not identically zero on (7r/2, 7r], that is p 6 0 and H 12 0 0.

If P ([CML(O)]ii) vanishes at any point 0o E (r/2, 7r), then 0o is a zero of the function

F(6) cos(0) + G(8) and
IG(O)l I num
F(O) Ipj denom,

where

ALM 01 2 .. VrlrrbI 2 + 3I (H 11 2Cos 2(0))

lm sin( 2)

and

denom g r2 ( - pi 11~H12 ) cs2()

2eL%& (2w.2 +1 Cos 2 (11)

+ 0a2 " a  2 7j + Hi + Ip 1
2 (H 1  cos2 (0))"
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Notice that for either small fpf, or small fH 121/H 1 or for 9 being close to 7r/2, then

num A a2 Vr/-.IrbI 1

denom r17r2 + O2 .a(2i rj + 7ri) <2 (57)

since
s - -) m n( 7+ 7r2

sin(- ) < M, and r172 2

Therefore, if is close to zero then d ([CML(G)]j) vanishes at some 60 E (7r/2,.r)

which is close to ir/2. The case where the normalized correlation magnitude IpI is large and

the SNR's f and are high belongs to this situation.

On the other hand, 0 < IpI < -y then - ([CML(0)]j) does not vanish on (ir/2, .). Since

d ([CML(0)I,) < 0, d ML(O)i) =0-d[O LO)i 1=ir/2 -d[O L8)i 0=?r=

and since g ([CML(B)],i) is a continuous function in 0, it follows that W ([CML(O)]ii) < 0

on (ir/2, r). Consequently, [CML(O)Iii is decreasing on (7r/2, 7r) and, by its symmetry about

7r, increasing on (7r, 37r/2) with the minimum achieved at 6 = ir.

Thus, the behavior of [CML(O)Ii on (ir/2,3ir/2) is quite intricate due to the interaction

of different parameters. In general, since

d
To([ML(O)]i) < 0, 0 E (0, r/2],

To[ML(O)] 10=7r = 0,

and

dO

and since ([CML(0)],,) attains its (global) maximum at 0 = 0,27r, it follows that there is a

(global) minimum at 00 E (7r/2, 7r] and, by its symmetry about 7r, also at 27r - 0o. The exact

location of 0o however depends of Aw and other parameters 7r/&, r.2a72, Ipl , and m.

A similar argument can also be applied to the case where p(Aw;m) < 0.

Finally, we note from (49) (also from (9)) that, for 0 < IpI < 1, the variance [CML]i,

i = 1,2, can be expressed in terms of elements of the matrix CRB which hold for 0 < IpI < 1.

Therefore, the following result, which is a summary of the preceding discussion, also holds

when IpI = 1 by an elementary continuity argument.

Proposition C.2 Consider [CML]ii , i = 1, 2, as a function of the temporal phase dif-

ference 0, 0 < 6 < 27r, of two narrowband plane waves with arbitrary signal corelation
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(0 < IpI < 1) and electrical angular separation Aw, impinging on a ULA whose coordinate

origin is chosen at the center of the array. Suppose IBW < Aw < min{(I + 1)BW,7r}

for some nonnegative integer I with 0 < I < Lj. Then

(a) for IBW < Aw < min{(£+1)BW, r}, then [CML(O)]ii, i = 1,2, is symmetric

about 0 = 7r and

* if I is even (including zero) then, on the interval [0, r], [CML(O)]ii attains

its (global) maximum at 0 = 0, and its (global) minimum at Oo E (7r/2, r];

* if I is odd then, on the interval [O, r], [CML(O)Iii, i = 1,2, attains its

(global) maximum at 0 = 7r, and its (global) minimum at Oo E [0, r/2);

In either case, the exact location of 0o depends on Aw and other parameters 7r,/a 2 , 7r2/ 2 ,

Ipl, and m;

(b) for Aw-=(I+1) BW(<_7r),

[CML(O)]ii = H ( 1 a 21
2,ri HuflAI.(t+l)BW [( Ir Jp ( 2  COS2(0)or~~ 2 7,2 2

+ a2 (r+ 2 )* 1 2 2 i,j 1,2; j 6i,( 1 - 2 (H) cos2()) 1 Aw(+1)BW

where

H1IIAw=(t+1)BW = - - 2_____4 3r - sin 2

and

(-1)1+l m Cos (m)
H121Aw=(+l) BW =2 sin 2  ±t )

thus, [CML(O)]ii is periodic of period 7r and behaves similarly to [CRB(0)]ii, that

is, on the interval [0, r], it is symmetric about 7r/2, decreasing for 0 < 0 < ir/2, in-

creasing for 7r/2 < 0 < 7r, attains its maximum at 0 = 0, 7r, and its minimum at 0 = 7r/2.

Furthermore, in all cases, [CML]ii , i = 1,2, is arbitrarily large (oo) if and only if
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(i) IH1 21 = HI1 (hence, H is singular),

(ii) IpI = 1 (hence, S is singular i.e.)the two signals are coherent), and

(iii) 0 = 0, ir (i.e the two signals are in phase or out of phase).

Qualitatively, it follows from (49), using (50) and (51), that effect of the temporal phase

difference on [CML]ii , i = 1,2, is intensified when the normalized correlation magnitude IpI
is high.

On the other hand, since

(H) 2  ,os2 () i = 1,2,

2

4- I-Ill osO

121- l . (H12) 2
CS0H l [C R B] 2  = 47r 1p2  H H 2 ( cos(9)

-4 H 12 " [CRB]ji. [CRB]1 2 = 2 1 (Hi 2' 2  cos(9)7'i /Vtf H1 \7r21 1 i- Ip02 H 1) cos2(0)) 2

and since H 11 is small and a, b axe large when Aw is small (in terms of beamwidth), it follows

from (49) that, other things being equal, effect of 0 on [CML]ii, i = 1, 2, is augmented when

the two signals are closely spaced.

In short, effects of the temporal phase difference on [CML]ii, i = 1, 2, axe intensified

when the two signals are closely spaced and/or their normalized correlation magnitude is

high.
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7. NUMERICAL RESULTS

For simplicity, we shall consider the situation of two plane waves of equal powers im-

pinging on a uniform linear array. By setting 7r, = 7r2 in (41), (46) to (48) and (49) to (51),

we have

[CRB]1 1 = [CRB]22 , [CMu]11 = [CMu] 22 , [CML]11 = [CML] 2 2 - (58)

This, however, can be obtained without actually computing the corresponding variances as

in Appendix A.

In figures l(a) to 3(d), we consider (square-roots of) [CRB]ii, [CMu]ii, and [CML]ii

as functions of two variables, the electrical angular separation AW and the temporal phase

difference 0 where

0.1BW < Aw < 1BW, and 00 < 0 < 3600.

The vertical axis of each three-dimensional figure depicts V'K times of the corresponding

standard deviation (see (3)), measured in BWs, where N, the number of time samples

(snapshots), is assumed to be large.

Furthermore, all figures have the following common parameters

m = 5,

'1 _ '2- - 20 dB.
0 2  a 2

The first set of figures (figures 1(a) to 1(d)) presents [ORB],,, for IpI = 0.50, 0.90,

0.95, and 1.00, respectively. The second set (figures 2(a) to 2(d)) presents 1Cmuli1 for

IpI = 0.50, 0.90, 0.95, and 0.97, respectively. Finally, [CMLL, is presented in the third

set (figures 3(a) to 3(d)) for IpI = 0.50, 0.90, 0.95, and 1.00, respectively.

Figures 1(a) to 1(c), 2(a) to 2(d), and 3(a) to 3(c) are plotted using general formulas

(2), (4), and (9), respectively; figure 1(d) is based on (2) and figure 3(d) on (6) together

with (7) and (8). Thus, this graphical sample can be used to cross-examine the consistency

of our results with respect to general formulas given in references [2], [3], and [6].
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Figure I1(a). CRB for two equipowerod signals
with Irhol 0. 50, SNR-2DdB, impinging an a 5-elemnent ULA

00

Figure 1(b). CRB for two equlpowered signals
with I rho 1 -0.90, SNR-20 dB, Impinging an a 5-elemnent ULA
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Figure I(c). ORB for two equlpowored signals
with 1rhol =.95, SNR-20 dB, impinging on a 5-element ULA
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Figure 2(a). MUSIC for two equipowered signals
wi Irhol =0.50, SNR=20 dlB, impinging on a 5-el1ement ULA
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Figure 2(b). MUSIC for two equipowered signals
with Irho -0.90, SNR -20 dB, Impinging on a 5-element ULA
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Figure 2(c). MUSIC foir two equipowered signals
wth IrthoI=O.97, SNR=20 dB, Impinging on a 5-element ULA
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Figur 3(a). ML for two equlpowered signals
wtd lrho 1=0.50, SNR=20 dB, kmpiging on a 5-element ULA
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Figure 3(b). ML fo~r two equlpowered signals
with Irhol1 -0.90, SNR-20 dB, Impigin an a &6-se-ent ULA
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Figure 3(). ML for two equpowered signals
with Irhol., SNR-20 dB, mpinging on a ULA
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Notice that the behavior of [CRB]ii, [CMu]ii, and [CML]ii with respect to the

temporal phase difference 0 agrees with our results (Lemma 5, and Propositions B.2 and

C.2). In particular, when Aw = 1 BW, [CMui is independent of 0 in figures 2(a) to 2(d)

as stated in Proposition B.2, and also when Aw = 1 BW, [CML~Ji behaves in the same

manner as [CRB]i i in figures 3(a) to 3(d) as expected from Proposition C.2.

Qualitatively, as discussed in sections 4 to 6, effects of temporal phase difference 0

on (CRB]ii, [CMU]ii and [CML]ii are intensified when the two signals are closely spaced

and/or when their normalized correlation magnitude IpI is high. Figures 1(a) to 3(d) exhibit

this behavior.

8. CONCLUSIONS

We derive closed form expressions for the Cram6r-Rao Bound, MUSIC, and ML asymp-

totic variances corresponding to the two-source direction-of-arrival estimation where sources

are modeled as deterministic signals impinging on a uniform linear array.

The choice of the center of the array as the coordinate reference results in compact

expressions that greatly facilitate our study of effects of temporal phase difference (correla-

tion phase) of the two sources on asymptotic variances of estimation errors. For instance,

the behavior of the Cramr-Rao Bound, which was obtained earlier by Evans, et al. (refer-

ence [15]), can now be stated, with respect to the coordinate reference at the center of the

array, as follows.

(e) The CRB variance of estimation error, considered as a function of the

phase difference 0, is periodic of period 1800, symmetric about 900, and on the

interval where 00 < 9 < 1800, it is decreasing when 00 < 0 < 900, increasing

when 900 < 0 < 1800, and it assumes the minimum at 900 and maximum (either

finite or infinite) at 00 and 1800 (that is, either the two signals are in phase or

out of phase).

Since these effects are intensified, as reflected in derived expressions and exhibited in

numerical results, when the two signals are closely spaced and/or when their normalized

correlation magnitude is high, the following is a summary of our analytical results for

MUSIC and ML restricted to the case when the electrical angular separation is within one

beamwidth (0 < Aw < 1 BW).
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(e) Suppose 0 < Aw < 1 BW, then the asymptotic MUSIC variance of

estimation error, considered as a function of the temporal phase difference 0,

is symmetric about 1800, decreasing when 00 < 9 < 1800, increasing when

1800 < 0 < 3600, attains its maximum at 9 = 00 (that is, the two signals are in

phase) and minimum at 9 = 1800 (that is, the two signals are out of phase).

(e) Suppose 0 < Aw < 1 BW, then the asymptotic ML variance of estimation

error, considered as a function of the temporal phase difference 0, is symmetric

about 1800, and on the interval where 00 < 0 < 1800, it attains the maximum

at 9 = 00 (that is, the two signals are in phase) and minimum at 9 = 9o with

00 < 0 < 00, where the exact location of 0 depends on Aw and other parameters

(number of array elements m, normalized correlation magnitude 1pl, and signal-

to-noise ratios j and j)"

Our results provide an analytical background for simulations such as those performed

in references [10] and [12].
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APPENDIX A

Proof of Lemma 3

Although the main purpose of this appendix is to prove Lemma 3, the fundamental

development can be used to show that if the two plane waves have equal powers, that is

7 = 71"2, then

[CRB] 1 = [CRB]22 , [CMU] 1 1 = [CMU] 22 , [CML]1 1 = [CML] 22 , (A.1)

without actually computing the corresponding variances.

To facilitate the discussion we introduce the following family of 2 x 2 Hermitian matrices.

Let

C= {a real

that is, C is the collection of 2 x 2 Hermitian matrices M with Mil = M2 2. The following

properties of C are easy to verify.

(P1): MECandrreal * rMEC

(P2): ME C = MT,M*,Re(M) EC

(P3): nonsingular M E C =* M - 1 E C

(P4): M,NEC = M+NEC

(P5): M,NEC = MONEC

(P6): M,NEC => MNMEC.

Notice that MN need not be a matrix in the class C even though M and N are members

of C.

Recall that 0 denotes a point between the p-th sensor and the (p + 1)-st sensor of the

array such that (10) hold for some 1 < p _5 r- 1 and 0 < r < 1. Clearly, every point on the

line segment connecting the first and last sensors is of the form of 0 for some 1 < p < m - 1

and some 0 < r < 1.

We notice that

A;(origin at 0) Ao(origin at 0) = (origin at ) (A.2)
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where

A(origin at 0) E eikp+)A
k=O

=Sn(!M ) ei(P+r))'&W, (A.3)

and hence

det(A (origin at Q) Ao(origin at 0)) m m2 
- 2n( ,

which is independent of coordinate reference.

To further simplify notation we write

E (origin at Q) = E (k - (p - 1+ r))eikP+)W
k=O

Ek (origin at Q) = E (k - (p -1+ r))2ei(P+)A
k=O

Then

~(orign a0) = i (1(origin at 0

= k(origin at 0) iAigna0).

We are now ready to compute H(origin at 0). From (16) we obtain

D;(origin at 0) Do(origin at 0)

[ Z%1(k - (p - 1 + r))2 Ek2(origin. at 0) 1,(A4
[ k (origin at 0) Fm- 1( - (p -1+ r))

where

M-j 1 1
F(k -(p -l1+ri)) -m(m - 1)(2m - 1) + m(p - 1 + r)(m - p - r).

_= 
6

Next, from (13) and (16) we have

DO*(origin at 0) Ao(origin at 0) =-iMo(origin at 0), (A.5)

A0*(origin at Q) Do(origin at 0) =iMo(origin at 0), (A.6)

where

Mo(origin at 0) -[m(m + 1 - 2(p + r)) /2 Ek(origin at Q) ] (A.7)

Ek(origin at 0)) m (m +1I- 2(p + r)) /2]
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From (A.2), (A.4), and (A.7) we find that

A;(origin at 0) Ao(origin at 0) C C,

Di(origin at 0) Do(origin at 0) E C,

Mo(origin at O) E C.

By the generality of the point O, the matrix A*Ao, D*Do, and Mo belong to the class C

regardless of choice of coordinate origin.

Since

H = D;P-Do = DiDo - D*Ao(A Ao)-A*Do

= D;Do - Mo(A*Ao)-'Mo, (A.8)

it follows immediately that H is also an element of C regardless of choice of coordinate

origin.

Furthermore, being Hermitian, H is positive semidefinite. That is,

Hl _ 0; H 1 - IH1212 > 0. (A.9)

We claim H1 1  0. To see this we argue as follows. If H 1 1 =0, then by the second part of

(A.9) we also have H 12 =0 and thus

D*P-LD = D* P PX)P D. (A.10)

Let dj, and d 2 be the two columns of H, then (A.10) gives

d* (PA) P -dl = 0 = d* (P-) PL d,

dj* p1 pxd2=0=d2 1 PLi
S(A)A 2 A 0A A)*P Adl,

which then implies da, d2 E span(A). If r = 0 (resp., r = 1), then the coordinate reference is

the p-th (resp., (p+ 1)-st) sensor element. This, however, is impossible since both column

vectors d, and d2 have their p-th (resp., (p+ 1)-st) elements equal to zero while the p-th

(resp., (p + 1)-st) elements of a, and a2 are both equal to one. Thus, we can suppose that

0 < r < 1. It is clear that neither dj, j = 1,2, is a (complex) multiple of a, or a2. Hence, if

di E span(A) then there are two non-zero complex numbers a and 03 such that

i(m - (p + r) - j) = a+3ei(m(P+r)J) a , 0 < j :_ m - 1.

A-3



This, however, is unattainable for m > 3. Thus, Hll 0, and hence HI1 > 0.

Finally, using (A.8) with (A.2), (A.4), and (A.7), we obtain (29) and (30) immediately.

This concludes the proof of Lemma 3.

For the case of equipowered signals mentioned at the beginning of the appendix, we note

that S E C for 7r, = ir2 . From (2), (4), (9) (for 0 < IpI < 1) and (6) (for IpI = 1) we have

(A.1) readily.
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APPENDIX B

A Nontrivial Example

We shall consider the situation where the electrical angular separation AW is an integer

multiple of (standard or first null) beamwidth, denoted by BW, with one BW equal to

2r/m. That is ,oww
Aw = I BW = I ).

Since 0 < Aw < r it follows that I = 1,2,..., [LJ where [J denotes the largest integer less

than or equal to '

The interesting result we derive here can be summarized as follows.

Proposition Append.B Suppose m > 4 and Aw = I BW, for e = 1,2,..., [!J. Then,

for all choices of coordinate reference and any signal correlation matrix S, the variance

[CRB]ii, i = 1,2, is finite.

For m = 3 and Aw = 1 BW = 2, the variance [CRB]ii, i = 1,2, is arbitrarily large

(oo) if and only if the two signals are correlated with appropriate phase difference 0 which

depends on the choice of coordinate reference.

Proof of this proposition is carried out by the following two lemmas. It is interesting to

note that, when m = 3, the electrical angular separation Aw = 1 BW = 1 is neither small

in absolute value () nor in relative value (1 BW). Physically, for interelement spacing

equal to half of wavelength, two plane waves with angles of arrival (with respect to the

normal to the array), say, 01 = 00 and 0b2 such that sin(0 2) = 2 (say, 42 r 420) give rise to

this electrical angular separation.

First, using explicit expressions (29) and (30) for elements of H given in Lemma 3, we

have immediately

H(origin at 0) - in2 ) (B.1)

H 12(origin at 0) = (1s )  e ( (B.2)
2Bsin -
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hence
m Cos (LO

1H12(origin at O)1 = - (B.3)

By the geneiality of C, we co.-clude from (B.1) and (B.3) that H11 and 1H121 are indepen,-

dent of the choice of coordinate reference when Aw = £ BW.

Since the general coordinate reference is used in this appendix, to facilitate the discussion

we shall not restrict the temporal phase difference to any interval; however, in all cases, by

Lemma 2, we know that [CRB(0 + r)]j1 = [CRB(O)]ii, i = 1,2.

If m = 3 then £ = 1. It follows immediately

Hil = 1 -- jH 12 1,

2r
arg(H 12(origin at Q)) = r + 2 (2 - (p+ r)).

3

By appealing to (45), we obtain

Lemma Append.B.1 Suppose m = 3 and Aw = 1 BW (= 21). Then, for any choice of

coordinate reference, the matrix H is singular. Consequently, for m = 3 and Aw = 1 BW,

the variance [CRB]ii, i = 1,2, is arbitrary large (oo) if and only if

Ip1 = 1 and 0 = (1 - 2(p + r)) + kr, (B.4)

where k is any integer, Ip and 0 as in (26), and p and r defined the coordinate reference 0

as in (10). In particular, if the center of the array is chosen as the coordinate reference,

then 0 = kir in (B.4).

We next consider the case where m > 4. For ease of notation we shall define

f(m;) IH121
Hil

then, by (B.1) and (B.3),

2 cos()
f(m;t) = i(B.5)

(!z)sin 2 )-
Suppose m > 4 is fixed. Then for 1 < t < k < [LJ, we see that

sin > sin (i) (>B0),
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and

Therefo.,,, .,r a fixed m > 4,

f(m;k)<f(m;e) for 1<1<k< [7. (B.6)

We shall prove

f(m;I)< I for m>4 and I<i< []. (B.7)

To this end, in view of (B.6), we need only show

f(m;1) <1 for m>4. (B.8)

From (B.5), it is clear that f(m; 1) < 1 is equivalent to

1+ 2cos < sin2 () for m > 4. (B.9)

We list the coresponding values of the LHS and the RHS of (B.9) for 4 < m < 7.

4 1 + V- z 2.4142 2

5 g 2.6180 2.7639

6 1 + v 2.7321 2.9166

7 2.8019 ;-, 3.0121

Observe that (B.9) holds for 4 < m < 7. Also note that the LHS of (B.9) is bounded by

3 and the RHS of (B.9) is greater than 3 for m = 7. Thus, to show (B.9) it suffices to show

the RHS of (B.9) is an increasing function of m. To do this, we define

g(x) - sin , x > 4.
3

Then

g,(x)= sisisi)n2 l)cos(i)] 2r (B.10)

Using the inequality (reference [19], page 75)

cos(t) < sin(t) 0 < t < 7r,t '
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we write

xsin 7r (2 ) o() >Co. (7r (X2 1)cs 2

Cos (")
> 0, for x>4.

This proves g'(x) > 0 and thus g(x) is an increasing function of x, for x > 4. It follows that

(B.9) holds for all m > 4 which proves (B.8) which, in turn, implies (B.7).

We summarize the discussion in

Lemma Appd.B.2 Suppose m > 4 and Aw = I BW, for e = 1,2,..., LJ. Then the

matrix H is nonsingular for all choices of coordinate reference. Consequently, the variance

[CRB~I,, i = 1,2, is finite for any choice of coordinate reference and any signal correlation

matrix S.
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APPENDIX C

Computing [CMu(O)Iii, i= 1,2

In this appendix, we snall compute [CMU(O)]ii, i = 1,2, for the center of the array as

the coordinate reference.

Recall that, for 0 < Ipi < 1,

CMU = a 2 (HH 1)-'Re KCMU - (HOI -1 Re(H®KT) (®) 1

where

K = S- 1 + r2S-I (A*A) - l S - 1.

Using

(H 0 I)- = I,

together with the fact that H is real when the coordinate reference is chosen at the center

of the array, we obtain
0.2

CMU = 2Hl2 HGRe(KT).

Therefore, for i = 1, 2,

[CMu(O)Iii 0,2 [Re( Re(Ki,), (C.1)2H, / - 21H1  2 Hil

where, by a straightforward computation,

*Re (K) 41+ da2Tri (1 - pJ2) " et(S) (i(.,) 2'

sin(s--) )

1x [(ir + Ipl2 i) M + 2  /iflr .IpI* (s ,, cos(O) ij E f'2}(C.2)
2j .
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